

SpectraEDX Training 2014

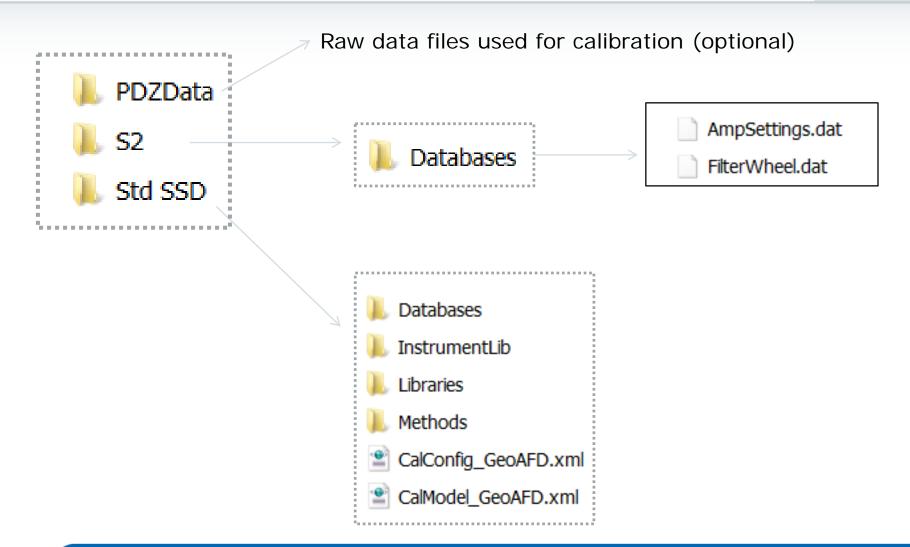
																										/
1 1.01																										4.00 1e 0.0002 lelium
Lithium	Be ^{1.85} Beryllium Kα 0.108															100 C	Boron		C Carbon Kα 0).277	N 0.0 Nitrogen Kα 0.3	392 Κα	^{ygen} 0.525	F 0.0 Fluorine Kα 0.6	001 N Ne 677 Ka	$ \begin{array}{ccc} 0 & 20.18 \\ \mathbf{Ne}^{0.0009} \\ \overset{\text{leon}}{} \\ \alpha & 0.849 \end{array} $
Na ^{0.97} ^{Sodium} Kα 1.040																	Al Alumin Kα 1		Si Silicon Kα 1	1.740	P 1. Phosphor Kα 2.0	010 Κα	2.07 fur 2.309	CI 0.0 Chlorine Kα 2.6	622 Ka	Ar 0.002 ^{Argon} (α 2.958
	Ca ^{1.54} Calcium	Sc ^{2.99} Scandium Kα 4.093	Ti 4.5 Titanium Kα 4.512	54 V Vanad 12 Κα	4.953 Ko	Cr 7.15 Chromium	Κα 5.900	⁴⁴ Fe Iron 0 Κα	7.87 6.405	Cobalt Kα 6	t 6.931 K	Ni ^{8.} _{Nickel} Κα 7.48	.91 C 80 K	Cu ^{8.93} opper α 8.046	Zn ^{Zinc} Kα 8	3.637	Galliun Kα 9	9.251	Ge German Kα 9	nium /	As Arsenic 5	543 Kα	e 4.81 enium 11.224	Br Bromine Kα 11.9		(r 0.004 (rypton) (α 12.648)
37 85.47 Rb 1.53 Rubidium Κα 13.396	38 87.62 Sr 2.64 Strontium Kα 14.165	39 88.91 Y 4.47	40 91.2 Zr 6.5 Zirconium Kα 15.775	22 41 .51 Nb Niobin 75 Κα 1	92.91 92.91 8.57 N Ma 16.615 Ka	42 95.94 Mo 10.22 Molybdenum Κα 17.480	43 (98 Tc 11.50 Technetium Kα 18.367	8) 44 50 Ru n Ruthe 57 Κα 1	101.07 12.37 nenium 19.279	45 10 Rh Rhodiun Κα 20	102.91 4 12.41 P 0.216 K	46 106. Pd $^{12.}$ Palladium Kα 21.17	.42 47 .02 A Si 77 Ko	107.87 10.50 ilver α 22.163	48 1 Cd Cadmin Κα 23	112.41 8.69 um 8.173	49 1 In Indium Kα 24	114.82 7.31 4.210	50 1 Sn ^{Tin} Kα 25	118.71 7.29 5.271	51 121 Sb 6. Antimony Kα 26.3	1.76 5.69 7 559 Κα	127.60 6.23 Iurium 27.473	53 126	5.90 54 4.93 X 512 Ko	4 131.29 (e ^{0.006} ^{(enon} (α 29.775
55 132.91 Cs 1.87 Cesium Kα 30.973	56 137.33 Ba 3.59 Barium Kα 32.194	57 138.91	72 178.4 Hff 13.3 Hafnium Lα 7.899	49 73 31 Τα Tantal 99 Lα	180.95 16.65 alum 8.146	4 183.84 19.25 Tungsten Lα 8.398	75 186.2 Re 21.02 Rhenium Lα 8.652	21 76 02 ΟS 0smit 2 Lα	190.23 22.61 nium 8.911	77 19 1 Iridium Lα 9	192.22 7 22.65 P 9.175 L	Pt 195. Pt 21. Platinum L α 9.44	.08 79 .46 A Go 42 Lo	9 196.97 19.28 α 9.713	80 2 Hg Mercur Lα 9	00.59 13.53 y 9.989	81 2 TI Thalliu Lα 10	204.37 11.85 Im 0.269	82 2 Pb Lead Lα 10	207.20 11.34 0.551	83 208 Bi 9 Bismuth Lα 10.8	8.98 9.81 Pole 339 Lα	(209) 9.32 onium 11.131	85 (2 At Astatine Lα 11.4	210) 86 7.00 R Ra 127 Lo	6 (222) Rn ^{0.01} adon .α 11.727
87 (223) Fr 1.87 Francium Lα 12.031	88 (226) Ra 5.50 Radium Lα 12.339	89 (227) Ac 10.07 Actinium																								
tAtomic	<u>c number</u> 79.90 → Atomi 3.12 → Densi	iic weight		Ceriur Lα Μα	6.77 P um 4.839 Lo 0.884 M	Praseodymium α 5.035 $M\alpha$ 0.927	Nd ^{7.0} Neodymium Lα 5.228 Mα 0.979	01 Pm m Prome 28 Lα 9 Μα	n 7.26 methium 5.432 1.023	$Samaria Samaria L\alpha 5 M\alpha 1$	7.52 rium E 5.633 L 1.078 N	Eu ^{5.} ^{Europium} Lα 5.84 Mα 1.13	.24 G 49 Lo 31 M	3d 7.90 adolinium α 6.053 1α 1.181	Tb Terbiur Lα 6 Μα 1	8.23 m 5.273 1.240	Dyspro Lα 6 Mα 1	8.55 psium 6.498 1.293	Ho ^{Holmiu} Lα 6 Mα 1	8.80 um 1 5.720	Er 9. Erbium	9.07 Τη Thu 49 Ια	n ^{9.32} ulium 7.180	Yb 6 Ytterbium	5.97 L n Lu 116 Lo	_U 9.84 utetium α 7.655
Kα 11	+ Symb + Eleme 1.924 1.481 + Energ	bol ent name gy (keV)		90 Th Thoriu	232.04 91 11.72 P rium Pr	Pa 231.04 Pa 15.37 Protactinium	92 238.03 U 18.95	⁰³ 93 95 Np	⁽²³⁷⁾ 20.45	94 Pu	(244) 9 19.84	95 (24 Am ^{13.}	43) 96 .69 C	6 (247) Cm ^{13.51}	97 Bk	(247) 14.79	98 Cf	(251) 15.1	99 Es	(252) 13.5	100 (2)	257) 101 M	1 (258) d		259) 10	
	Inr	novation	/ with P	nteor	AITV /																					

Outline of Training

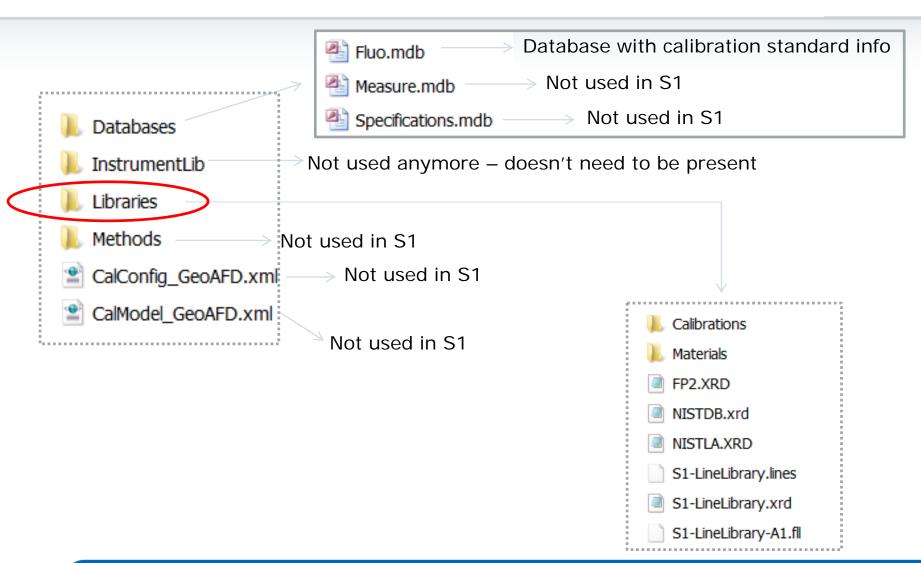
- 1. File structure
- 2. Setting up the calibration standards
- 3. Line library
- 4. Making the calibration
- 5. Selecting thresholds and transferring cal to instrument

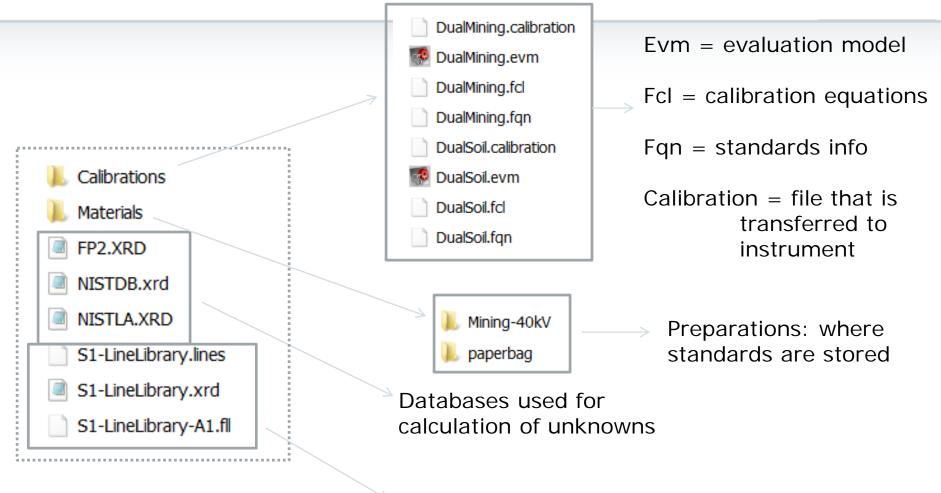
Special Note for Handheld (S1) Users

SpectraEDX was designed for use on a computer connected to a single S2 Ranger or other benchtop unit


Some parts of the program are not functional for the S1 handheld instruments, but need to be present in order for the software to work.

Having multiple SpectraEDX calibration files on one computer requires the use of multiple pointer files or a substitution (S:\) drive.


1. File Structure of SpectraEDX



File Structure (part 2) – Mid Level Folders

File Structure (part 3) - Libraries

Line libraries: .fll for making calibration, .xrd and .lines for calculation of unknowns

2. Setting up the Calibration Standards

Basic Steps for Defining Calibration Standards

- 1. Choose material group
- 2. Choose material
- 3. Choose elements and compounds
- 4. Enter names and compositions
- 5. Choose preparation and size

Opening an Application

- Open the toolbox by clicking on the shortcut icon
- Click on the Application button
- Alternately the application can be opened by going to

C:\ProgramFiles(x86)\SpectraEDX\ApplicationWizard.exe

First Screen on Entering SpectraEDX (new or opened application file)

<u></u>	
DualSoil	Please push "Next" button
Preparation	ApplicationWizard Program
Measurement Calibration	ApplicationWizard makes it possible to define an XRF Application by a succession of automated steps, while providing manual adjustments and flexibility at all steps to meet complex specific demands.
Modules	To create a XRF application, just follow the steps presented in the left explorer pane one by one, and save the document. The complete procedure creates an Application file (name.evm) which contains references to the method files of the application, together with various options which can be selected at the last step of the process (the Application step).
Results Formatting	Opening a Spectra ^{EDX} Application file:
S2 Ranger Application	Use the File Open command to open an Application (EVM file), or a Draft Application (DEVM file). The Application files were formerly referred to as Evaluation Models in Spectra ^{EDX} version 2.2 and below, but are now referred to as Application files. Draft Applications are unfinished Applications, these will be converted to finished Applications (EVM) at the second to last step (the Application step).
	Creating a new application from scratch:
	Use the File New command, select the name for the new application and follow the steps. A new Application starts out as a Draft Applications (DEVM file). This Draft Application will be converted to working Application (EVM file) in the next to last step (the Application step).
	Making another application (e.g. with different corrections) from the same data:
	1.Create an empty document, giving it a name.
	2. Review the steps down to the Calibration step making the same selections as before.
	3.Define the new calibration at the Calibration step.
	4. Then proceed as usual.
	Defining a new preparation:
	1.Go to the Setup mode (use the pliers tool or the File Setup mode menu)
	2.Go to the Preparation Parameters step,
	3.Enter the new preparation name. The new preparation will be a copy of the currently selected preparation.
	4.Make needed changes on the Parameters, Size, Contamination, and Foil screens
	5. The changes to the database are automatically saved.
	Defining a new compound (which will be available in the Materiale I Compounde sten):

Calibration "Tree" List

Expanded

Materials Page – choose material group and material

ApplicationWizard - [DualSoil.e							<u>- 8 ×</u>
File Edit View Method Calib							<u>_ 8 ×</u>
DualSoil	Material groups:						
Elements							\mathbf{X}
Compounds	Materials:						
Standards				D i i i i i i			
Parameters	Name Mining-25k∨	Elem Standa 0 0	Date of creation 29-Dec-2009 10:10	Date of last chang 29-Dec-2009 10:1			
Size	Mining-40k∨	50 222	30-Mar-2009 22:27				
Contamination							
Foil Prepared Standards							
Heparcu Standards							
Measurement Method							
Measure Standards							
Line Parameters							
Manage Standards							
Manage Standards							
- Modules							
Limits Check							
S2 Ranger Application							
							\times
•							
DualSoil							
List of materials for the current materia	al aroun					Status	ШМ

A Material Group is a set of Materials that all have something in common. They can be categorized into material types (metals, geo, etc.), customer names, project types, or a single Material Group can be used for everything.

In the above slide, the Material Group is Mining, and it contains two Materials: Mining-25kV and Mining-40kV. (In this example, only Mining-40kV is populated in the database, so the Mining-25kV Material shows no standards.)

The Material and Material Group information is stored in the Fluo.mdb database.

Additives and Contaminants are separate Material Groups.

A Material is a set of standards that are used in a particular calibration or set of calibrations. Standards with exactly the same name cannot be used in different Materials.

Our naming conventions:

In the two Materials mentioned above, standards in Mining-25kV begin with M25 and in Mining-40kV begin with M40.

For example, SRM2710 would be called M25SRM2710 in one Material and M40SRM2710 in the other.

Choosing Elements in the Material

	il.evm] Calibration Window Options Help	<u>_ 8 ×</u>
DualSoil DualSoil Materials Compounds Standards Preparation Prepared Standards Measurement	Material group: Mining-20k√ H He Compound list Li Be B C N O F Ne All Si P S Cl Ar Na Mg All Si P S Cl Ar Silicon Si 14 4	
Calibration Modules Modules Get Chiration S2 Ranger Application	K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Fotes K 10 7 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Rn Fr Aa Ac Fr Ra Ac Fr Ni Xe Ni Xe Ni Xe Ni Xe Ni Xe Ye Xe Ni Xe Ye Xe Ni Xe Ye Xe Ye <t< td=""><td></td></t<>	
	CePrNdPmSmEuGdTbDyHoErTmYbLuThPaUNpPuAmCmBkCfEsFmMdNcSe3419SeleniSe3419SeleniSe3419SeleniSe3419NobiumNbStStStSt20StStSt20NobiumNb4123St<	
	Molyb Mo 42 24 Rhodium Rh 45 25 Pallad Pd 46 26 Silver Ag 47 27 Cadmi Cd 48 28 Tin Sn 50 29 Antimo Sb 51 30 Cerium Ce 58 31 Lecture Lift Lift 12	<u>_</u>
DualSoil	Status	

Choosing Compounds in the Material

DualSoil	Material group: Mining			▼ Material	al: 🚺	lining-40k∀			•
Materials	All compounds:					ompound list:			
Elements	· · · · · · · · · · · · · · · · · · ·	/ Formula	Z				Z OrV Spe.		
· · ·	Wax	CH2	6		• •	Sodiu Na2O	11 1	•	<u> </u>
Standards	Water	H2O	1			Vlagn Mg	12 2		
Preparation	Tungsten Carbide	WC	74			Alumin Al	13 3		
🛬 Prepared Standards	Polypropylene	CH2	6			Silicon Si	14 4		
Measurement	Oil	CH2	6		F	Phosp P	15 5		
Calibration	Mylar	C10H8O4	6		3	Sulfur S	16 6		
	Mn3O4	Mn3O4	25		F	Potas K	19 7		
Modules	Manganese(IV)Oxide	MnO2	25		0	Calcium Ca	20 8		-
Limits Check	Manganese(II,IV)Oxide	Mn2O3	25			Titanium Ti	22 9		
Results Formatting	Lithiumtetraborate	Li2B4O7	3			√anad V	23 10		
Application	Lithiummetaborate	LiBO2	5			Chrom Cr	24 11		
S2 Ranger Application	Lithiumbromide	LiBr	35			Vang Mn	25 12		
	LOI	CO2	6			ron Fe	26 13		
	Ironsulfide	FeS	16			Cobalt Co	27 14		
	Iron-Il-oxid	FeO Fe3O4	26 26			Nickel Ni	28 15		
	Iron-(II,III)-oxide HCI	HCI	26 17			Copper Cu Zinc Zn	29 16 30 17		
		H2O	1			Arsenic As	33 18		
	Cordierite	2Mq0,2Al2O3,5SiO2	14			Seleni Se	34 19		
	Cobalt II-III oxide	Co3O4	27			Rubidi Rb	37 20		
	Cellulose	C6H10O5	8			Stronti Sr	38 21		
	Carbon dioxide	CO2	6			Zirconi Zr	40 22		
	Calciumcarbonate	CaCO3	20			Niobium Nb	41 23		
	Calcium fluoride	CaF2	20			Molyb Mo	42 24		
	CO2	CO2	6			Rhodium Rh	45 25		
	CH2	CH2	6		F	Pallad Pd	46 26		
	Boric Acid	H3BO3	5		5	Silver Ag	47 27		
				_		Cadmi Cd	48 28		
				-1	ت 1	Tin Sn	50 29		
				-	- 1	Antimo Sb	51 30		
					👬 🛛 🕯	Cerium Ce	58 31		-

Inputting Names and Data for Standards

Soil	Material group: Mining									▼ Mate	erial: Minir	ng-40kV					-
Materials		%							(Auto) New standa							-
Compounds											1						
Standards	Display concentrations per: Co	ompounds	Elements	After ∨alid	ation, go to :	Bottom	Right										
Preparation		Sum(%)	Na2O(%)	Mg(%)	AI(%)	Si(%)	P(%)	S(%)	K(%)	Ca(%)	Ti(%)	V(%)	Cr(%)	Mn(%)	Fe(%)	Co(%)	
Prepared Standards	M45HWOE_211	99.73	Ŧ	Ŧ	7.000	17.000	0.050	T	2.000	1.100	0.350	T	0.242	0.0800	5.000	T	
Measurement	M4515HWOE_211	99.73	Ŧ	Ŧ	7.000	17.000	0.050	Т	2.000	1.100	0.350	Т	0.242	0.0800	5.000	Т	
Calibration	M45HWOE_214	100.87	Ŧ	Ŧ	10.000	20.000	0.140	T	2.200	1.750	0.600	Т	0.016	0.0800	5.500	T	
Modules	M4515HWOE_214	100.87	Ŧ	Ŧ	10.000	20.000	0.140	Т	2.200	1.750	0.600	T	0.016	0.0800	5.500	T T	
Limits Check	M45HWOE_220	100.83	+ T	Ŧ	10.000 10.000	22.000 22.000	0.140 0.140	0.200 0.200	2.200 2.200	1.700 1.700	0.600 0.600	T T	T T	0.0800	5.500 5.500	T	
Results Formatting	M4515HWOE_220 M45AMIS008	100.83	+ 1.080	+ 11.333	10.000 5.080	23.521	0.009	0.200	2.200 0.250	4.043	0.186	0.022	1.308	0.0800	5.500 8.713	0.020	
Application	M4515AMIS008	100.36	1.080	11.333	5.080	23.521	0.009	0.520	0.250	4.043	0.186	0.022	1.308	0.1550	8.713	0.020	
S2 Ranger Application	M45AMIS013	99.82	1.000	11.424	4.043	22.746	0.009	1.220	0.250	3.729	0.198	0.022	1.425	0.1550	8.951	0.020	
	M4515AMIS013	99.82	1.010	11.424	4.043	22.746	0.009	1.220	0.150	3.729	0.198	0.022	1.425	0.1550	8.951	0.020	
	M45AMIS014	100.03	0.905	10.424	5.745	17.582	0.004	Т	0.225	2.821	0.293	0.067	8.747	0.1550	11.007	0.015	
	M4515AMIS014	100.03	0.905	10.424	5.745	17.582	0.004	Т	0.225	2.821	0.293	0.067	8.747	0.1550	11.007	0.015	
	M45AMIS031	100.49	0.100	1.006	7.181	25.925	0.052	0.030	1.700	0.521	0.413	Т	Т	3.0620	6.357	0.005	
	M4515AMIS031	100.49	0.100	1.006	7.181	25.925	0.052	0.030	1.700	0.521	0.413	Т	Т	3.0620	6.357	0.005	
	M4515AMIS032	100.31	0.140	1.158	6.553	23.498	0.061	0.050	1.842	0.357	0.413	T	T	3.0775	6.811	0.005	
	M45AMIS032	100.31	0.140	1.158	6.553	23.498	0.061	0.050	1.842	0.357	0.413	T	T	3.0775	6.811	0.005	
	M45AMIS056 M4515AMIS056	99.97 99.97	0.630 0.630	10.776 10.776	3.904 3.904	22.066 22.066	0.013 0.013	0.964 0.964	0.125 0.125	8.343 8.343	0.144 0.144	T T	0.130 0.130	0.1473 0.1473	7.021 7.021	0.010	
	M45AMIS063	100.17	0.630	9.030	5.904 6.915	13.052	0.013	0.964	0.125	0.343 2.071	0.144	0.096	13.800	0.1473	13.916	0.010	
	M4515AMIS063	100.17	0.490	0.030	6.015	13.052	0.039	0.050	0.100	2.071	0.341	0.050	13.000	0.1473	13.016	0.010	-
	▲ Mining-40kV /								•							•	
		Automa	tic Unit:	ррм	%												
		, aconto			70												
															Print	Paste wit	n Lit
	Type "B" for Balance, "T" for Trac	ce or use conte	extual menu														

Rules for Inputting Standards

- 1. All standard names must be typed in manually (there is one exception to this: "paste with titles")
- 2. Values can either be typed manually or input from a spreadsheet
- 3. Values can be output to a spreadsheet
- 4. Tools are available such as ppm/%, "inaccurate", column balance, and line balance
- 5. Concentrations must add to 100% (within limits at top) to be used with FP-based calibrations

Selecting a Preparation for a Material

ApplicationWizard - [DualSoil.e Ele Edit View Method Calib Ele Edit View Method Calib Ele Edit Image: Second Se			B× B×
DualSoi Materials Materials Materials Materials Materials Materials Materials Materials Meanagestandards Measurement Measurement Metho Measure Standards Measure Standards	Select Preparation MiningPapeBbags MiningPapeBbags Solid		
		Status NUM	

Defining a Preparation

MapplicationWizard - [DualSoil.ev	vm *]	<u>_ 8 ×</u>
File Edit View Method Calib		_ & ×
DualSoi		
📄 📑 Materials	Preparation	
Elements	MiningPaperBags	
Compounds	New preparation :	
Standards	New preparation :	
Preparation	Method: Loose Powder	
Parameters	Solid Fused Bead	
Size	Addition Pressed Pellet	
Contamination	C Loose Powder	
Foil	+ Solution Tablet	
Prepared Standards	= Material + Additive 100. g 100 %	
Measurement Metho		
Measure Standards	Ratio	
Line Parameters	Original material I Original material/Total : 1	
Calibration	Total 1 Original material/Additive: 0	
Manage Standards		
Compute		
Modules	Binder/flux 0 I Unknown dilution	
Limits Check		
S2 Ranger Application		
Sz Kaliger Application		
🛃 DualSoil		
For Help, press F1		atus NUM

Infinite Thickness Calculation

Re tot were shorted calculation were over planets			
Image Standards Proparedia Messare Standards Proparedia Image Standards Proparedia Image Standards Proparedia Image Standards I	ApplicationWizard - [DualSoil.e	vm *]	_ 8
DurkSd Materials Materials Materials Compounds Standards Compounds Preparation Preparation Preparation Preparation Preparation Preparation Preparation Preparation Preparation Measurement Standards Demeter Measurement Stanager Application	<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>M</u> ethod <u>C</u> alib	bration Window Options Help	_ 8
DurkSd Materials Materials Materials Compounds Standards Compounds Preparation Preparation Preparation Preparation Preparation Preparation Preparation Preparation Preparation Measurement Standards Demeter Measurement Stanager Application			
Materials Materials Composition Composition Preparation Parameters Size Preparation Size Preparation Prepar			
Materials Materials Composition Composition Preparation Parameters Size Preparation Size Preparation Prepar	DualSai	- Proparation	_
Status			
Standards Preparaton Measurement Measurement <td< td=""><td></td><td></td><td></td></td<>			
Standards Preparation Perparation Contrainination Contrainination Perpared Standards Perpared Standa		Size	
Preparation Preparation Preparation Preparation Preparation Prepared Standards Measurement Prepared Standards Measurement Prepared Standards Measurement Prepared Standards Contamination Contamination Prepared Standards Measurement Measurement Prepared Standards Contamination Contamination Contamination Prepared Standards Contamination Contamination<		Diameter:	
Parameters State Contrainination Fold Prepared Standards Measure Standards Measure Standards Measure Standards Calibration Measure Standards Measure Standards Calibration Measure Standards Measure Standards Measure Standards Calibration Measure Standards Measure Standards Measure Standards Calibration Manage Standards Modules Modules Modules Standards Standards Demeter Thickness Density Diameter Thickness Density Diameter Thickness Density Diameter Thickness Density			
Contamination Fol Prepared Standards Measurement Metho Measurement Measurement Metho Measurement Measurement Metho Measurement Measurement Metho Measurement Measurement Metho Measurement Measurement Metho Measurement Measurement Measu		2 2 6.6 g/cm2 [1] C Mass:	
Calaration	Parameters	100. g	
Calbration Prepared Standards Prepared Standards Measurement Metho Measurestandards Calbration Modules Modules Modules Modules Application S 2. Ranger Application S 2. Ranger Application Modules M	Size	Area: Thickness:	
Prepared Standards Prepared Standards Measurement Measurest Metho Measurest Metho Weasurest Metho Weasurest Standards With Parameters Calibration Modules Modules Modules Modules Modules Standards Standards Standards Standards Workstandards Workstandards </td <td></td> <td></td> <td></td>			
Preparete Sahards Measurement Measurement Metho Measurestandards Line Parameters Calibration Manage Standards Compute Manage Standards Compute Statis Formatting Statis Formatting Statis Formatting Statis Formatting Statis Formatting Statis Formatting DualSoll	Foil		
Measurement Measurement Metho Measurement Metho <td>Prepared Standards</td> <td></td> <td></td>	Prepared Standards		
Measure Standards Line Parameters Calbration Manage Standards Modules Kesults Formatting Application S 22 Ranger Application Diameter Thickness Mass Diameter Mass Density Diameter Mass Density Diameter Mass Density Diameter Mass Density Diameter Mass Density Diameter Mass Density			
Calibration Compute Manage Standards Compute Makeus Formating Application S 2 Ranger Application S 2 Ranger Application Units Office		C Diameter Thickness Density	
Inte Parameters Calbration Manage Standards Compute Modules Clunts Check Results Formatting Application S2 Ranger Application S1 S2 Ranger Application		😝 🔿 Diameter Thickness Mass	
Calibration Calibration Calibration Calibration Compute Compute Compute Results Check Results Formatting Calibration S 25 Ranger Application DualSoil.	Line Parameters		
Modules	Calibration		
Modules	Manage Standards		
Modules	Compute		
Results Formatting Application S2 Ranger Application UnalSoil	Modules		
Application S2 Ranger Application Subscription DualSoil.			
Application S2 Ranger Application UnalSoil	Results Formatting		
S2 Ranger Application			
DualSoil	S2 Ranger Application		
DualSoil	-		
DualSoil	I		
DualSoil			
	Help, press F1	Status	NUM

"Foil" Attenuation Definition

ApplicationWizard - [DualSoiLevm *] Bile Edit View Method Calibration Window Options Help	_ 문 × _ 문 ×
Ele Edit View Method Calbration Window Options Help DualSod DualSod DualSod Materials Preparation Preparati	
DualSoil	Status

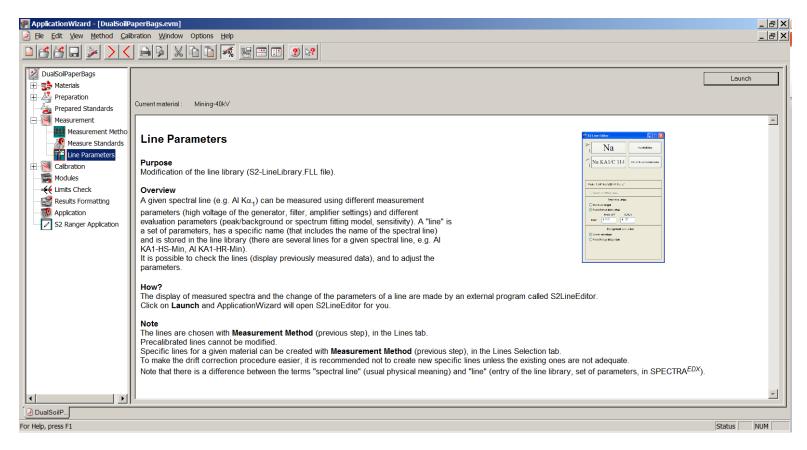
15.03.2021

Choosing the Prepared Standards

🎆 ApplicationWizard - [DualSoil.e						_ & ×
File Edit View Method Cali	bration <u>W</u> indow Optior	ns <u>H</u> elp				_ 8 ×
			? ⊳ ?			
DualSol Materials Elements Compounds Standards Preparation Parameters Size	Material group: Mining Standard Material: M45W03 Automatice	Material: Mining-40kV New Prepared Sta	M45WO3		د	
Contamination	Display prepared stand	ards All standard m	aterials 🔽 All pr	eparations Thickness (cm)	n) Density (g/cm3)	<u> </u>
Foil	Field-054	MiningPaperBags	Field-054	2.20	3.000	
Prepared Standards	Field-065	MiningPaperBags	Field-065	2.20	3.000	
Measurement	Field-266	MiningPaperBags	Field-266	2.20	3.000	
Measurement Metho	Field-394	MiningPaperBags	Field-394	2.20	3.000	
Measure Standards	Field-523	MiningPaperBags	Field-523	2.20	3.000	
Measure Standards	I Field-528	MiningPaperBags	Field-528	2.20	3.000	
Line Parameters	Field-816	MiningPaperBags	Field-816	2.20	3.000	
Calibration	I Field-822	MiningPaperBags	Field-822	2.20	3.000	
Manage Standards	☑ M4515AGV_2	Mining-40kV	M4515AGV_2	2.20	3.000	
Compute	M4515AK396	Mining-40kV	M4515AK396	2.20	3.000	
	M4515AK397	Mining-40kV	M4515AK397	2.20	3,000	
Modules	 M4515AK401 M4515AK402 	Mining-40kV	M4515AK401	2.20	3.000	
	M4515AK402	Mining-40kV	M4515AK402 M4515AK408	2.20 2.20	3.000 3.000	
Results Formatting	M4515AK408	Mining-40k∨ Mining-40k∨	M4515AK408 M4515AK411	2.20	3.000	
Application	M4515AK423	Mining-40kV	M4515AK423	2.20	3.000	
	M4515AK426	Mining-40kV	M4515AK425 M4515AK426	2.20	3.000	
S2 Ranger Application	M4515AMIS008	Mining-40kV	M4515AMIS008	2.20	3.000	
	M4515AMIS013	Mining-40kV	M4515AMIS013	2.20	3.000	
	M4515AMIS014	Mining-40kV	M4515AMIS013	2.20	3.000	
	M4515AMIS014	Mining-40kV	M4515AMIS014	2.20	3.000	\sim
	M4515AMIS022	Mining-40kV	M4515AMIS022	2.20	3.000	
	M4515AMIS022	Mining-40kV	M4515AMIS022	2.20	3,000	_ 🕅
🛛 🔊 DualSoil						
The definition of the material has been	changed at this story do y	you want to say the chan	2023			

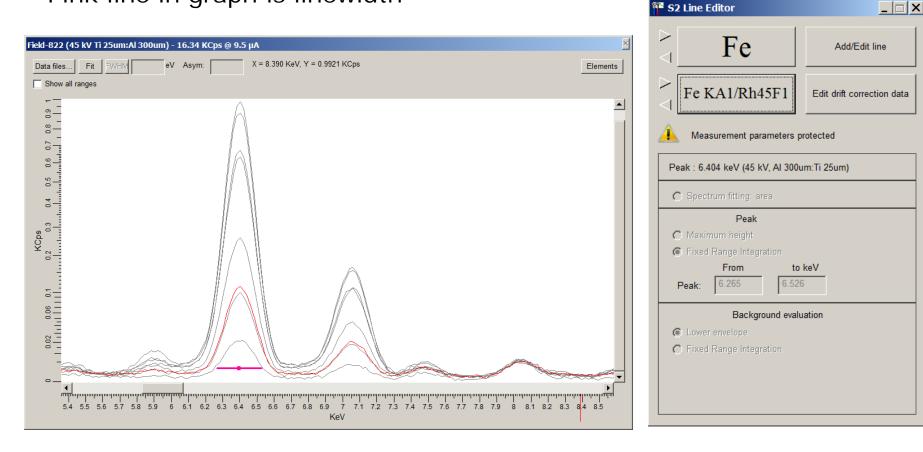
3. Using and editing the Line Library

Line Library Access #1


Launcher: Tools → Line Library Maintenance

🛄 LibMaı	nager V2.2	2.75									? _ 🗆 🗙
System		Display Default Librar		SD\Librarie	s\S1-LineLibr	ary-A1.fll					>>
(ED)	×	🖱 Special Libra	ry 🗌 Text	format							
Toggl	e Sel	ect lines from m	ethods								
	selected lin	nes first 🛛 🦵 acted. Sort: Z	Show drift correc	ion details	🗖 Sho	ow calibration details			Co	opy selection to	clipboard
			line ke\	/ tube KV	Filter	Def Camala	Ref Line	Calib.		Detector	
	Line N	Comment			Fliter	RefSample	Ref Line		Intensity		-
8	0 KA1	VerA1F	0.5249	5					Integr.	Normal	
12	Mg KA1	AL15	1.253	15					Integr.	Normal	
12	Mg KA1	Alloy15	1.253	15					Integr.	Normal	
12	Mg KA1	Mine15	1.253	15					Integr.	Normal	
13	ALKA1	AL15	1.487	15		TM15AL6061TA	ALKA1/AL15		Integr.	Normal	
13	ALKA1	AL25	1.487	25					Integr.	Normal	
13	ALKA1	Alloy15	1.487	15		TM15AL6061TA	Al KA1/Alloy15		Integr.	Normal	
14	Si KA1	AL15	1.74	15					Integr.	Normal	
14	Si KA1	Alloy15	1.74	15					Integr.	Normal	
14	Si KA1	Mine15	1.74	15					Integr.	Normal	
14	Si KA1	Mine40	1.74	40	Ti 25um:				Integr.	Normal	
15	P KA1	Alloy15	2.014	15					Integr.	Normal	
15	P KA1	Mine15	2.014	15					Integr.	Normal	
16	S KA1	Alloy15	2.308	15					Integr.	Normal	
16	S KA1	Mine15	2.308	15					Integr.	Normal	
17	CI KA1	Alloy15	2.622	15					Integr.	Normal	
17	CI KA1	Mine15	2.622	15					Integr.	Normal	
19	K KA1	Mine15	3.314	15					Integr.	Normal	-
De	fault-> Spec	pial	Delete gro	oup	Updat	e cal reference in lib	. Update cal re	ference in FCL		кі і	
	Copy grou	p	Clear drift correc	ion data	Undo	changes in master				Exit	

Line Library Access #2


In application → Measurement section → Line Parameters Click on Launch

Line Editor Interface

Choose element and line to edit or check Pink line in graph is linewidth

- Line chosen must have same voltage and filter as the calibration measurements
- Lines must be unlocked before editing
- For most cases, Fixed Range Integration with Lower Envelope background evaluation is the correct type of peak to use
- Occasionally Fixed Range Integration background is useful
- Spectrum fitting mode is not active for the handhelds
- See S2LineEditor training material for more information

More Line Editor Hints

- Some lines have drift correction data. This is used in the benchtop (S2) units to correct for intensity drift in detectors. For handheld (S1) units, intensity drift is negligible. Drift correction in SpectraEDX is only used to transfer calibrations between instruments, and currently only works for some situations.
- To edit a line, it must be unlocked, which is done by right-clicking on the top grey area and choosing "unlock all lines". The pink line on the graph can then be changed or new limits typed in.
- Adding a new line is done by clicking "insert foreign line" in the same drop-down menu.

3. Creating the Calibration

Basic Calibration Steps

- 1. Choose standards
- 2. Determine necessary overlaps
- 3. Determine appropriate matrix coefficients

Choosing Standards

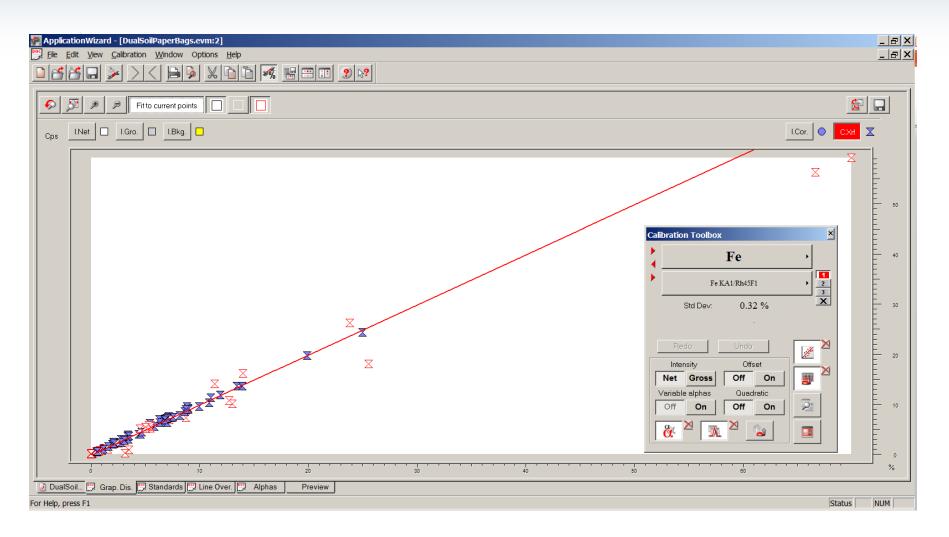
🖉 ApplicationWizard - [DualSoilPa	aperBags.evm]				
📄 <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>M</u> ethod <u>C</u> alil	bration <u>W</u> indow Optio	ons <u>H</u> elp			
			? ⊳?		Path where standards must be
DualSoiPaperBags	Data files path:	S:\Std SSD\Libraries\Materials'	Mining-401/\AbdiningDap		(last folder is named for preparation)
🕀 🔹 Materials	· · · · · · · · · · · · · · · · · · ·	· · · · ·		sibags	
+ Preparation	Disable missing stds.	Disable invalid stds. Imp	ort more stds.		Samples: 111 Selected: 111 💷 🕕
Prepared Standards	Prepared standards	V Imported Material	Preparation	File	1
Measurement	M45HWOE 213	Imported Mining-40kV	Mining-40kV	Exist	
100000	✓ M45W_2a	Imported Mining-40kV	Mining-40kV	Exist	
Measurement Metho	M45QLO_1	Imported Mining-40kV	Mining-40kV	Exist	
	M45DNC_1a	Imported Mining-40kV	Mining-40kV	Exist	
Line Parameters	M45DTS_2b	Imported Mining-40kV	Mining-40kV	Exist	
Calibration	M45GSP_2	Imported Mining-40kV	Mining-40kV	Exist	
Manage Standards	✓ M45BHVO_2	Imported Mining-40kV	Mining-40kV	Exist	
	✓ M45AGV_2	Imported Mining-40kV	Mining-40kV	Exist	Problems noted
Compute	✓ M45GSS_5	Imported Mining-40kV	Mining-40kV	Exist	
Modules	M45GXR_1	Imported Mining-40kV	Mining-40kV	Exist	here
Eimits Check	M45GXR_4	Imported Mining-40kV	Mining-40kV	Exist	
Results Formatting	✓ M45SU-1b	Imported Mining-40k∨	Mining-40kV	Exist	
Application	M45SiO2_Au50	Imported Mining-40k∨	Mining-40kV	Exist	
S2 Ranger Application	M45SiO2_Au100	Imported Mining-40k∨	Mining-40kV	Exist	
Joz Kunger Appleadon	M45SiO2_Au500	Imported Mining-40k∨	Mining-40kV	Exist	
	M45SiO2_Au1000	Imported Mining-40kV	Mining-40kV	Exist	
	M45MP-1b	Imported Mining-40kV	Mining-40kV	Exist	
	M45AMIS015	Imported Mining-40kV	Mining-40kV	Exist	- Multiple proparations
	M45AMIS022	Imported Mining-40kV	Mining-40kV	Exist	Multiple preparations
	M45SRM694	Imported Mining-40kV	Mining-40kV	Exist	
	M45SY_3	Imported Mining-40kV	Mining-40kV	Exiet	
	Field-054	Imported Mining-40kV	MiningPaperBags	Exist	
	Field-065	Imported Mining-40kV	MiningPaperBags	Exist	
	Field-266	Imported Mining-40kV	MiningPaperBags	Exist	
	Field-394	Imported Mining-40kV	MiningPaperBags	Exist	
	✓ Field-523 ✓ Field-528	Imported Mining-40kV	MiningPaperBags	Exist	
	Field-528	Imported Mining-40k∨ Imported Mining-40k∨	MiningPaperBags	Exist Exist	
	✓ Field-818 ✓ Field-822	Imported Mining-40k∨ Imported Mining-40k∨	MiningPaperBags MiningPaperBags	Exist	
		imponed Mining-40KV	Miningraperbags	LAISU	
DualSoilP					
or Help, press F1					Status NUM

Elements Screen with Toolbox

PicationWizard - [DualSoil]			ops Help																_ & ×
					II 🥐 🛙	∂?													-84
DualSollPaperBags	Н																	Не	
Prepared Standards - Measurement Measurement Metho	Li	Be											В	С	Ν	0	F	Ne	
Measure Standards	Na	Mg											AI	Si	Ρ	S	CI	Ar	
Manage Standards	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
Example 2 Constraints Check Example 2 Constraints Formatting Application	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe	
52 Ranger Application	Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
	Fr	Ra	Ac											Ca	alibration 1	Toolbox C	u	•	×
Compton Ce Pr Nd PmSm Eu Gd Tb Dy H										Hc	Cu KA1/Rh43F1								
Rayleigh Th Pa U Np Pu Am											Stat. error dominates standard deviation.								
Current Calibrated Default Calibration										Intensity Offset									
DualSoilP								Net Gross Off On Variable alphas Quadratic											

Toolbox Functions

bratio	n Toolbox			×					
		•							
Fe KA1/Rh45F1									
	Std Dev:	x							
Inten	isity								
/ariable	e alphas On	Quad	ratic On	2					
ð.	×	×							
	Red Inten Net /ariable	Fe K Std Dev: Redo Intensity Net Gross /ariable alphas	Std Dev: 0.3 Redo Undo Intensity Offs Net Gross Offs /ariable alphas Quad Off On Offs	Fe KA1/Rh45F1 Std Dev: 0.32 % Redo Undo Intensity Offset Net Gross Off On (ariable alphas Quadratic Off On Off On					


- Switch between screens
- Control offset and quadratic
- Undo/redo
- Control element and line used
- Monitor standard deviation

- > Alphas
- > Overlaps
- Internal standard
- > Graph
- > Alphas
- > Tabular display
- Summary

Graph Screen with Toolbox

Standards (Tabular Display) Screen with Toolbox

Applic	ationWizard - [DualS	oilPaperBags.e	:vm:3]							_
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>C</u> alibration	n <u>W</u> indow Op	otions <u>H</u> elp							_
ا	🚰 🗔 🍃 >	< 🗎 🌶		D 🗖 💀 🗄		1				
			<i>8</i> 0 -							
Num	Standard Nam ∇			Chemical Concen		Absolute Devi	Relative Devi	LLD (P		
90	M45AGV_2	288.3	254.5	4.680	4.505	-0.175	-3.7	23.5		
22 23	M45AK396	35.5	35.0	0.575	0.554	-0.021	-3.6	33.6 <mark>28.8</mark>		
23 24	M45AK397 M45AK401	44.7 70.3	43.8 68.9	0.710	0.699 1.098	-0.011 -0.026	-1.6 -2.3	28.8 28.7		
24 25	M45AK401 M45AK402	70.3	66.9 31.0	1.124 0.520	0.493	-0.026	-2.3 -5.2	26.7		
25 26	M45AK402 M45AK408	51.8		0.520 0.815	0.495	-0.027		30.0		
26	M45AK408 M45AK411	35.2	50.9 34.9	0.530	0.810	-0.005	-0.67 3.9	30.0		
28	M45AK423	41.9	41.3	0.690	0.655	-0.035	-5.0	25.7	Calibration Toolbox	
20 35	M45AK425 M45AK426	29.9	29.5	0.530 0.520	0.655	-0.055	-5.0	20.7		
13	M45AMIS008	574.4	477.0	8.713	8.976	0.263	3.0	30.6	Fe ·	
14	M45AMIS013	576.0	479.7	8.951	9.000	0.049	0.55	30.8	4 I C	
15	M45AMIS013	728.3	462.8	11.007	11.380	0.373	3.4	41.5		
100	M45AMIS015	359.3	251.0	5.846	5.615	-0.232	-4.0	29.4	Fe KA1/Rh45F1	
101	M45AMIS022	446.5	325.9	6.297	6.977	0.680	-1.0	30.9	V	
54	M45AMIS022	871.3	475.5	13.778	13.614	-0.164	-1.2	49.6	Std Dev: 0.32 %	
16	M45AMIS027	404.8	410.5	6.357	6.325	-0.032	-0.50	29.9		
17	M45AMIS032	440.4	448.0	6.811	6.882	0.070	1.0	32.7		
55	M45AMIS034	484.6	404.8	7.161	7.573	0.412	5.7	27.9	Redo Undo	
56	M45AMIS036	128.8	122.9	1.944	2.013	0.069	3.6	22.7		
18	M45AMIS056	465.9	364.8	7.021	7.280	0.259	3.7	28.6	Intensity Offset	
53	M45AMIS060	430.5	349.5	6.636	6.727	0.090	1.4	28.0	Net Gross Off On 📑 🖉	
19	M45AMIS063	871.8	477.2	13.916	13.622	-0.294	-2.1	46.7		
57	M45AMIS064	451.6	378.0	6.699	7.056	0.356	5.3	27.9	Variable alphas Quadratic	
20	M45AMIS071	101.8	98.9	1.608	1.590	-0.018	-1.1	20.5	Off On Off On 🔎	
21	M45AMIS072	141.2	134.8	2.098	2.206	0.108	5.1	22.4		
58	M45AMIS124	477.9	372.5	7.126	7.467	0.341	4.8	27.9	👸 🖄 📠 🖄 🛄 🔲	
36	M45BCS176_2	455.6	689.6	6.860	7.119	0.259	3.8	32.4		
38	M45BCSAICaFe	1684.0	1109.8	23.797	26.313	2.516	11	38.1		
40	M45BCS Bauxit	904.0	877.6	11.399	14.125	2.727	24	25.7		•
)ouble-	click :enable or disable	standard								
		0.995773	Regre	ession weighting					->Pf	PM
	d correlation coefficient:		Abs	Rel Dev Aut	0					
Disabl	e traces Invert selec	tion	1.000						>Prepared	d elemen
🤌 Dual	Soil 📴 Grap. Dis. 📴	Standards 🕎	Line Over.	🔋 Alphas 🛛 Pr	eview					
Help, p	ress F1								Status	NUI

Overlaps Screen with Toolbox

<u>File E</u> dit <u>V</u> iew	I - [DualSoilPaperBags.evn Calibration Window Optic Image: State S	ons <u>H</u> elp	<u></u>				_ & ×
Overlap Hrt LA1 Ni KB1 Pb LA1 Ta LA1	Energy Delta Remains 7.893 0.149 8.267 0.219 10.550 2.502 8.146 0.098	rk Type Measured Measured Measured Measured	Base for calculation A Hr LB1/Rh45F1 Ni KA1/Rh45F1 Pb LB1/Rh45F1 Ta LB1/Rh45F1	Adjust Adjust Adjust Adjust	Coefficient -0.3601 -0.04281 -0.02041 -0.5055	Calibration Toolbox	
	n item, click right on it; to insert ap. Dis. 🕅 Standards 🥅 Lin					Status	

Adding an Overlap

- Right click anywhere on Overlaps screen to get this box
- Enter overlapping line or choose from drop-down menu
- Choose correction method (measured, calculated, concentration)
- Click OK and it will be added to the list
- Escape and sum peaks can be included in the list or excluded

Overlapping line: OK Correct by Measured Cancel Factor Given Adjustable Search parameters Min concentration	Overlap correction for Fe KA1/Rh45F1 (6.404 keV)									
Factor Given Adjustable	Overlapping line:		Ī				•	ОК		
Search parameters	Correct by	Measured	•				•	Cancel		
	Factor		(🔿 Given	Adjustable	е				
Min concentration	Search parameters									
	Min concentration				_	1000PPM	🔽 Escape peaks			
Distance (eV)	Distance (eV)					300	🔽 Sum peaks			

Alphas Screen with Fixed Alphas

MapplicationWizard - [DualSoilPaperBags.evm:5]

File Edit View Calibration Window Options Help

P 🚰 🖡		U U	oncentrations	Influence		Variable alphas	FI FI	ixed alphas (conce	entrations)	Fixed alphas	s (int.)
ame	Z	Min	Max			Max	Theoretical		Empirical	Empiric	al
	1	0.0	3.1	0.031	0.000	0.000	-0.995	Fixed	0.000		
	6	0.0	13.6	0.100	0.000	0.000	-0.730	Fixed	0.000		
	8	0.0	58.3	0.198	0.000	0.000	-0.341	Fixed	0.000 Calibration To	oolbox	×
	11	0.0	6.2	0.036	0.000	0.000	0.586	Fixed	0.000	~	
	12	0.0	29.8	0.322	0.000	0.000	1.081	Fixed	0.000	Ca	•
	13	0.0	27.9	0.422	0.000	0.000	1.512	Fixed	0.000		
	14	0.0	97.7	2.089	0.000	0.000	2.138	Fixed	0.000	Ca KA1/Rh45F1	▶ 2
	15	0.0	13.2	0.348	0.000	0.000	2.643	Fixed	0.000		
	16	0.0	44.9	1.528	0.000	0.000	3.406	Fixed		Dev: 0.20 %	×
	17	0.0	2.5	0.099	0.000	0.000	3.942	Fixed	0.000		
	19	0.0	12.8	0.687	0.000	0.000	5.369	Fixed	0.000		
	20	0.0	31.3	0.000	0.000	0.000	0.000	Fixed	0.000		
	22	0.0	59.8	0.371	0.000	0.000	-0.621	Fixed	0.000 Redo	Undo	_ 📈 🗡
	23	0.0	56.2	0.348	0.000	0.000	-0.620	Fixed	0.000 Intensity	· Offset	
	24	0.0	68.4	0.403	0.000	0.000	-0.589	Fixed	0.000		
	25	0.0	77.5	0.423	0.000	0.000	-0.546	Theoretical	-0.546 Net G	ross Off On	II 👿 🦳
	26	0.0	69.9	0.316	0.000	0.000	-0.451	Computed	-0.946 Variable alp	ohas Quadratic	
	27	0.0	72.4	0.252	0.000	0.000	-0.349	Fixed	0.000 Off	On Off On	$\overline{\rho}$
	28	0.0	78.7	0.140	0.000	0.000	-0.178	Fixed	0.000		
	29	0.0	79.8	0.038	0.000	0.000	-0.048	Fixed	0.000 💦 🖄	<u>x</u> × 🖕	
	30	0.0	80.3	0.159	0.000	0.000	0.198	Theoretical	0.198	1	
	33	0.0	75.8	0.800	0.000	0.000	1.056	Fixed	0.000		
	34	0.0	55.2	0.710	0.000	0.000	1.288	Fixed	0.000	1	
		0.0	3.1	0.031	-	-	-0.995	>>	0.000		
ent		0.0	31.2				No Correct.	Computed	Fixed	Computed	Fixed
Mein coefficients:										/	
	regression w	reighting		Slope: 0.251	12 %/Cps	Offset 0.0	Cps Quadratic -0.8	1942			Fxd alpha
								1			
	Abs Rel	Dev Auto		Computed Fi	ixed	Computed Fixed	Computed	Fixed			
alSoil	DualSoil 🗒 Grap. Dis. 🗒 Standards 🗒 Line Over. 🛱 Alphas 🛛 Preview										

_ & X

Alphas Screen with Variable Alphas

_ & ×

_ & ×

PaperBags.evm:5]

File Edit View Calibration Window Options Help

	1	0	Concentrations	Influence	V	ariable alphas	Fixed a	lphas (concentrations)	Fixed alph	as (int.)
ame	Z	Min	Max		√ Min	Max	Theoretical	Empirical	Empir	rical
	1	0.0	3.1	0.031	-0.987	-0.985	-0.986			
	6	0.0	13.6	0.135	-0.989	-0.988	-0.988	1		
	8	0.0	58.3	0.571	-0.981	-0.980	-0.980	Calibration T	oolbox	×
	11	0.0	6.2	0.059	-0.959	-0.957	-0.957	•		
	12	0.0	29.8	0.281	-0.946	-0.943	-0.944		Rh	•
	13	0.0	27.9	0.259	-0.934	-0.930	-0.931			
	14	0.0	97.7	0.890	-0.915	-0.910	-0.911	• • • • • • • • • • • • • • • • • • •	Rh KB1/Mine45	▶ 2
	15	0.0	13.2	0.118	-0.898	-0.893	-0.894			3
	16	0.0	44.9	0.389	-0.873	-0.867	-0.867	Std	Dev: 0.0085 %	X
	17	0.0	2.5	0.021	-0.854	-0.846	-0.847			
	19	0.0	12.8	0.100	-0.793	-0.783	-0.784		•	
	20	0.0	31.3	0.232	-0.753	-0.741	-0.742			
	22	0.0	59.8	0.410	-0.699	-0.685	-0.686	Redo	Undo	_ 🎽 🗶
	23	0.0	56.2	0.365	-0.664	-0.648	-0.649	Intensit	/ Offset	
	24	0.0	68.4	0.406	-0.612	-0.593	-0.594			
	25	0.0	77.5	0.427	-0.570	-0.549	-0.551	Net G	ross Off On] 🛛 👿 🦳
	26	0.0	69.9	0.340	-0.509	-0.485	-0.487	Variable al	phas Quadratic	
	27	0.0	72.4	0.318	-0.462	-0.436	-0.439	Off	On Off On	
	28	0.0	78.7	0.278	-0.380	-0.350	-0.353			
	29	0.0	79.8	0.254	-0.348	-0.316	-0.319	X X	🔨 🗡 🍙	
	30	0.0	80.3	0.200	-0.281	-0.246	-0.249		<u> </u>	1
	33	0.0	75.8	0.054	-0.111	-0.067	-0.071	-		
	34	0.0	55.2	0.009	-0.059	-0.012	-0.016		-1	
		0.0	3.1	0.031	-0.987	-0.985		>>		
ent		0.0	0.1				No Correct.	Computed Fixed	Computed	Fixed
	⊢ regression w	eighting		Slope: 0.000	142 %/Cps	Offset 0.0	Cps Quadratic 0			Exd alpha
	Abs Rel	Dev Auto		Computed Fi	xed	Computed Fixed	Computed Fixed	d		
alSoil	🕎 Grap. Dis.	Standards	🖞 Line Over. 😭 🛛 Ali	ohas Preview						
	10, arap. 513.									

Completion of the Calibration Curves

- When all the calibration curves are satisfactory, either click on the Save icon or on the "x" in the top right corner. When the "x" is clicked, a pop-up window will appear asking whether to save the calibration before closing.
- The calibration is saved to a .fcl file with a name chosen by the user. A name based on the material may be suggested, but any name can be used.
- Before using the calibration, an evaluation model must be completed. A .evm file is created with the same name as the .fcl file when the calibration is saved.

5. Selecting Thresholds and transferring cal to the instrument

Opening an evm file

- Click on "Tools"
- Choose "Applications" from the dropdown menu
- Alternatively, the .evm file can be accessed by going to

C:\ProgramFiles(x86)\SpectraEDX\ApplicationSetup.exe

Opening an evm file

Click on "File", then "Open" from the drop-down menu
Choose the name of the desired calibration

"Save" Screen With Error Reporting

- > This screen must be selected in order to save changes
- Errors are reported in the Application Status window
- For handheld (S1) applications, ignore drift correction warnings

👹 ApplicationSetup - [DualSoilPaperBags.evm]	
📸 <u>F</u> ile <u>V</u> iew <u>W</u> indow Options <u>H</u> elp	_ B ×
Info/Save Methods Display/Store Preparation Elements map Chemistry: rules Optimization	1
Application status	<u> </u>
Ca KA1/Rh45F1 does not have calibration compatible drift correction data. Ti KA1/Rh45F1 does not have calibration compatible drift correction data. V KA1/Rh45F1 does not have calibration compatible drift correction data. Cr KA1/Rh45F1 does not have calibration compatible drift correction data. Fe KA1/Rh45F1 does not have calibration compatible drift correction data. Ni KA1/Rh45F1 does not have calibration compatible drift correction data. Cu KA1/Rh45F1 does not have calibration compatible drift correction data. Cu KA1/Rh45F1 does not have calibration compatible drift correction data. As KA1/Rh45F1 does not have calibration compatible drift correction data. Rb KA1/Rh45F1 does not have calibration compatible drift correction data. Rb KA1/Rh45F1 does not have calibration compatible drift correction data. Rb KA1/Rh45F1 does not have calibration compatible drift correction data. Nb KA1/Rh45F1 does not have calibration compatible drift correction data. Nb KA1/Rh45F1 does not have calibration compatible drift correction data. Nb KA1/Rh45F1 does not have calibration compatible drift correction data. Nb KA1/Rh45F1 does not have calibration compatible drift correction data. Nb KA1/Rh45F1 does not have calibration compatible drift correction data. Unknown measuring conditions for line Rh KA1/RoHS45F1 Rh KA1/RoHS45F1 does not have calibration compatible drift correction data. Ag KA1/Rh45F1 does not have calibration compatible drift correction data. Ag KA1/Rh45F1 does not have calibration compatible drift correction data. Ag KA1/Rh45F1 does not have calibration compatible drift correction data. Ag KA1/Rh45F1 does not have calibration compatible drift correction data. Ag KA1/Rh45F1 does not have calibration compatible drift correction data. Ag KA1/Rh45F1 does not have calibration compatible drift correction data. Ag KA1/Rh45F1 does not have calibration compatible drift correction data. Ag KA1/Rh45F1 does not have calibration compatible drift correction data. Ag KA1/Rh45F1 does not have calibration	
Ready Access Co	onnections

Methods Screen

- Spectrum Fitting and Adjust dimensions are nonfunctional for handheld (S1)
- Normalize sum is available unless a matrix element/compound is chosen
- Progressive and conditional normalization not available for handheld (S1)
- Calibration method = fcl file
- Specification, modules, etc. are not used for handheld (S1)

MapplicationSetup - [DualSo	ilPaperBags.evm]	_ 🗆 X
File View Window Optio	ns <u>H</u> elp	_ & ×
🗋 🖆 🎦 🔚 🗎 🤶		
Info/Save Methods Display/Sto	ore Preparation Elements map Chemistry: rules Optimization	
Peak/background model	Spectrum fitting model	
Normalize sum(concentration	ns) Adjust dimensions for Compton = 1 I Enable variable bkg curvature	
Progressive normalization	Conditional normalization Noise 2 Overshot 1.6	
Calibration method: DualS	SoilPaperBags	
Format method:		
Modules set		- 1
Exist		
User calculations:		
Exist		
Specification: Mining	g-25kV	_
Ready		

Preparation Screen

- Choose a preparation from the list (created in Application Wizard)
- Preparation must match the unknowns to be measured
- Normalization is not used much in geo applications because of "invisible" elements like C, O, N, etc.

MapplicationSetup - [Du	ialSoilPaperBags.evm]		_ 🗆 X
💮 <u>F</u> ile <u>V</u> iew <u>W</u> indow (Options <u>H</u> elp		_ & ×
0 🖆 🎦 🗔 🖻	?		
Info/Save Methods Displa	ay/Store Preparation Elements map Chemistry: rules Optimization		
Preparation:	MiningPaperBags		•
Set total = 100% by	No (don't normalize)	C Matrix = 100%-others	
Sample area density	6.6 g/cm2	O Unknown thickness	
Added elements not pre	esent in sample	O Sample smaller than mask	
Added compound			
Addition/Total		C Unknown dilution	
Loss on ignition		O Unknown L.O.I.	
Foil material	С6Н10О5	8 mg/cm2	
Contamination			
Blank sample name:			
Ready		NUN	1 //

"Chemistry: rules" Screen

Choose initial concentrations, fix elements to 0, create matrix compounds, add thresholds, determine reporting (oxide vs. element)

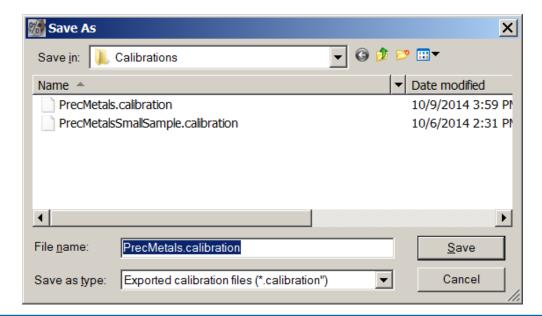
MapplicationSetup - [DualSoilPaperBags.evm]									
2	Eile	<u>V</u> iew <u>W</u> indow (Options <u>H</u> elp	_ & ×					
	6	5 🏾 🗖 👌	?						
Ì	nfo/Sa	ve Methods Displa	ay/Store Preparation Elements map Chemistry: rules Optimization						
	Z	Formula	Rule	New					
	14	SiO2	Compound not present (fixed to 0)	Edit					
	15	P205	Compound not present (fixed to 0)	Delete					
	16	S	Compound not present (fixed to 0)	Delete					
	17	CI	Compound not present (fixed to 0)						
	19	K20	Initialize concentration at 0.42 %						
	20	CaO	Initialize concentration at 5.00 %						
	22	Ti	Initialize concentration at 0.43 %						
	23	V	Initialize concentration at 0.10 %						
	24	Cr	Initialize concentration at 0.89 %						
	25	Mn	Initialize concentration at 0.91 % Initialize concentration at 5.00 %						
		Fe							
	27 Co Initialize concentration at 0.10 %								
Material: Mining-40kV Init									
	Calibration compounds C Elements C Oxides								
	Calibration compounds C Elements C Oxides D oxygen in bindings								
L									
Re	eady			NUM ///					

Creating Thresholds

Define chemistry rule
Formula: Pd
○ Not present (fixed = 0)
Remove if Pd<.02%
○ Fixed
Retrieve from database Database wizard
Matrix
O Other matrix compound by Compton peal
Other matrix compound by Rayleigh / Compton rati
Calibrated library Fixed selection in FCL file
© XRF 1 2 3 Pd KA1/Rh45F1
□ Do not use XRF if stoichiometry is known → ←
OK Cancel

- Use the "Remove if" line to enter thresholds
- Thresholds can be simple, like Pd<.02% or complex, like W>50%&Au<1%</p>
- & is used to indicate complex thresholds
- Multiple thresholds are separated by |
- The presence of large amounts of thresholds will increase calculation time
- This screen (obtained by double clicking on an element) is also used to set as matrix element, not present, or fixed to a single value

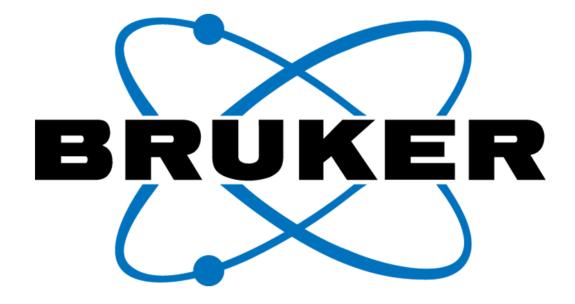
Optimization Screen


- > Only the three checked boxes are available for handheld (S1)
- Filter peaks can be used if low concentrations are not needed

Martin ApplicationSetup - [PrecMetals.evm]								
File View Window Options Help	<u>_ 8 ×</u>							
Info/Save Methods Display/Store Preparation Elements map Chemistry: rules Optimization								
Filtering options for questionable data								
▼ Filter peaks Intensity threshold 3*sigma								
Use negative intensities								
Discard excessive intensities TR lines Default lines Maj lines Maximum								
Proportional counter KCps 100 200 500 6000								
Scintillation counter KCps 100 150 300 6000								
Discard line when overlap > % of measured intensity								
✓ Ignore missing overlap error								
✓ Trim negative concentrations before absorption calculations								
□ Iteration control								
Maximum number of cycles (normal evaluation) 5								
Maximum number of cycles (optimized or multilayer) 5								
Error threshold to exit iteration loop (in % of calc. value):								
Ready NIIM								

Saving as a .calibration File

- Click on "File" and choose "Export to calibration file" from the dropdown menu
- The screen below will appear
- Choose an existing file to save over or create a new one by typing in the name at the bottom
- The .calibration file is what is transferred to the instrument


Transferring a Calibration to the Instrument

Files that need to be included and/or modified:

- ➤ .calibration
- ► .aen
- LineLibrary.xrd (if changes were made to the line library)
- LineLibrary.lines (delete if changes were made to the line library)
- ➢ .idf (only if new illuminations are used)

www.bruker.com

 $\ensuremath{\mathbb{C}}$ Copyright Bruker Corporation. All rights reserved